) TxPipe

SHOP

Audit Report

August 3, 2024

Big Blymp - Yamfore

Contents

1 = SUIIMATY oottt ettt et e ettt e st s s se st es s esestasacsesenen 3
1.8 = OVEIVIEW .ot 3
1iD = PTOCESS .o s 3

2 = SPECIICATION w.eueiiiieiceeece ettt sttt ettt 5
2.8 7 UTKOS i 5
2D = ASSELES et bbbt 6
2.C = TTANISACLIONS ...ttt s sttt nne 8

3 - AUAIEEA FILES ..ottt et 18

4 = FINAINES oottt s st bbbttt bbbt 19
4.a - YAM-001 USD can be stolen in Borrow transactioncecocceeernceeeeeneineernesneessessessesesnenn. 20
4.b - YAM-002 Exchange transaction: User can control staking key of output vaults 21
4.c - YAM-101 Exchange transaction: Users can collect too many ADA vaults, hurting vault

AVATLADIIILY .ottt a bbbttt 22
4.d - YAM-301 Simpler check for created at ... 23
4.e - YAM-302 Exchange transaction: Inefficient check for admin tokenccccccoeecvvecrvncrrnnnce. 24
4.f - YAM-303 Exchange transaction: Incentive for users to collect too many CBLP vaults, hurting

VAULE AVAILADIIIEY ..eoceiiice bbb ettt bt 25
4.g - YAM-304 Unneeded validity range restriction in Borrow and Exchangec.cccccoevvnieneece. 26
4.h - YAM-305 WithdrawFrom: Risk of double satisfaction attackccocvereeeerercrncencencineeneenenn. 27
4.1 - YAM-306 No sanity checks for governance UTXO datumccccocoeeverereeuninininenenneeeeeeeen. 28
4.j - YAM-307 No sanity checks for price feedscormrrrrnrinieniriereeee e 29

5 = MIDNOT ISSUES ...eeiiiiiiiiicci bbb bbb 31

6 = APPEIIAIX ..ottt ettt 32
6.a - Terms and Conditions of the Commercial AGreementcoceeeeurerereeercseneeeeneseneeeneeeeeeeeeen. 32
6.D = ISSUE GUIAE ... e e 34
6.C = REVISIONS ..ot s 35
6.0 = ADOUL US ..o e 35

1 - Summary

This report provides a comprehensive audit of Yamfore, a decentralized non-custodial lending protocol
on Cardano that offers stablecoins loans backed by ADA.

The investigation spanned several potential vulnerabilities, including scenarios where attackers might
exploit the validator to lock up or steal funds.

The audit is conducted without warranties or guarantees of the quality or security of the code. It’s
important to note that this report only covers identified issues, and we do not claim to have detected
all potential vulnerabilities.

1.a - Overview

The Yamfore protocol offers the possibility of taking loans of a fixed asset, e.g. a USD-based stablecoin,
by locking ADA as collateral. It also allows for providing liquidity for the loans in exchange for ADA
or CBLP tokens, the protocol’s main asset.

The protocol is comprised of three kind of Vault UTxOs, one for each asset managed by the protocol:
ADA, CBLP and the loaned asset, called USD hereafter. When users take loans, User Positions UTxOs
are created to hold the ADA collateral. All these UTxOs are held under the same script address that
corresponds to the Main validator, which controls the spending of all kinds of Vaults and User Posi-
tions.

Users can borrow USD from USD Vaults. When getting a loan, users must pay fees in CBLP tokens.
The fee and the collateral amounts depend on the size of the loan, governance parameters and USB/
CBLP price data that is obtained from oracles. This operation results in the creation of a User Position,
which holds the ADA collateral and information about the loan.

When repaying a loan, users must pay back into USD Vaults the USD loan plus an interest that depends
on the size of the loan, its duration, governance parameters and price data obtained from oracles.

Apart from borrowing and repaying, users can exchange USD for CBLP or ADA, by consuming CBLP
or ADA Vaults and creating USD Vaults. These USD Vaults will be available for loans.

A single Governance UTxO provides global settings such as the interest rate and the fees. Another
single UTxO, the Price Feed Pointer, provides the hash for the Price Feed withdraw script that validates
the USB/CBLP prices given by the oracles. A privileged Admin actor controls the initialization and
update of both UTxOs.

For the Price Feed, Yamfore provides a default implementation that reads the price information for
USD and CBLP from two oracle UTxOs.

1.b - Process

Our audit process involved a thorough examination of Yamfore validators. Areas vulnerable to po-
tential security threats were closely scrutinized, including those where attackers could exploit the
validator’s functions to disrupt the platform and its users. This included evaluating potential risks such
as unauthorized asset addition, hidden market creation, and disruptions to interoperability with other
Plutus scripts. This also included the common vulnerabilities such as double satisfaction and minting
policy vulnerabilities.

The audit took place over a period of several weeks, and it involved the evaluation of the protocol’s
mathematical model to verify that the implemented equations matched the expected behavior.

Findings and feedback from the audit were communicated regularly to the Yamfore team through Dis-
cord. Diagrams illustrating the necessary transaction structure for proper interaction with the protocol
are attached as part of this report. The Yamfore team addressed these issues in an efficient and timely
manner, enhancing the overall security of the platform.

2 - Specification
2.a - UTxOs

2.a.a - User Positions
A user position UTxOs holds the collateral for a loan. It is created when the user borrows and removed
when he repays the loan.

« Address: Main validator script hash

« Value
« N ADA (collateral)
« 1 user validity

o Datum: Position(PositionP) where PositionP is { created at: Int, borrow amt: Int,
interest rate: (Int, Int) }

2.a.b - USD Vaults

A USD vault contains USD tokens that can be borrowed. USD vaults can be created by users than want
to offer USD for loans.

+ Address: Main validator script hash
+ Value

+ N USD (one of the stablecoins accepted by the protocol)
« Datum: UsdVault

2.a.c - CBLP Vaults
CBLP vaults contain CBLP tokens. Users can exchange their USD for CBLP by consuming these vaults.

+ Address: Main validator script hash
+ Value

« N CBLP
o Datum: CblpVault(Int)

2.a.d - ADA Vaults
ADA vaults contain ADA tokens. Users can exchange their USD for ADA by consuming these vaults.

« Address: Main validator script hash
« Value:

« NADA
« Datum: AdaVault

2.a.e - Governance UTxO

The governance UTxO contains global parameters used in the protocol.

+ Address: Gov validator script hash.
« Value

1 gov validity
« Datum: GovDat:

e interest rate: (Int, Int)

o cblp fee: (Int, Int)

« exchange reward: (Int, Int)

2.a.f - Price Feed Pointer UTxO
The Price Feed Pointer UTxO indicates the withdrawal script used to validate the price feed.

https://github.com/Yamfore/yamfore.contracts/blob/300f43062c5e261a70226bfccb3844876c16a15c/aik/validators/m.ak#L65
https://github.com/Yamfore/yamfore.contracts/blob/300f43062c5e261a70226bfccb3844876c16a15c/aik/lib/yamfore/types.ak#L81
https://github.com/Yamfore/yamfore.contracts/blob/300f43062c5e261a70226bfccb3844876c16a15c/aik/validators/m.ak#L65
https://github.com/Yamfore/yamfore.contracts/blob/300f43062c5e261a70226bfccb3844876c16a15c/aik/lib/yamfore/types.ak#L78
https://github.com/Yamfore/yamfore.contracts/blob/300f43062c5e261a70226bfccb3844876c16a15c/aik/validators/m.ak#L65
https://github.com/Yamfore/yamfore.contracts/blob/300f43062c5e261a70226bfccb3844876c16a15c/aik/lib/yamfore/types.ak#L79
https://github.com/Yamfore/yamfore.contracts/blob/300f43062c5e261a70226bfccb3844876c16a15c/aik/validators/m.ak#L65
https://github.com/Yamfore/yamfore.contracts/blob/300f43062c5e261a70226bfccb3844876c16a15c/aik/lib/yamfore/types.ak#L80
https://github.com/Yamfore/yamfore.contracts/blob/300f43062c5e261a70226bfccb3844876c16a15c/aik/validators/gov.ak#L12
https://github.com/Yamfore/yamfore.contracts/blob/300f43062c5e261a70226bfccb3844876c16a15c/aik/lib/yamfore/types.ak#L36

« Address: PFP validator script hash.
+ Value

« 1 PFP validity
o Datum: PfpDat: Credential

2.b - Assets

2.b.a - USD

USD is a shorthand for a stablecoin accepted by the protocol, that a user can borrow by locking ADA
as collateral. It is an external token.

+ Policy ID: defined with parameter usd_hash in Main validator
+ Token name: tokens.usd()

2.b.b - CBLP
Users must pay in CBLP tokens the fees of taking a loan. It is an external token.

+ Policy ID: defined with parameter cblp_hash in Main validator
« Token name: tokens.cblp()

2.b.c - User validity
Identifies a user Position UTxO.

« Policy ID: hash of Main validator
» Token name: tokens.user validity(tag) where tag is the hash of a seed UTxO.

2.b.d - User auth

Related to a user validity token via the tag. This is held by the user who created the position.
« Policy ID: hash of Main validator

+ Token name: tokens.user_auth(tag) where tag is the hash of a seed UTxO
2.b.e - Main auth

Meant to be held by the admin as well. Allows delegating the locked ADA.

« Policy ID: hash of Main validator

« Token name: tokens.admin()

2.b.f - Gov validity

Identifies the Gov UTxO.

+ Policy ID: hash of Gov validator

« Token name: tokens.gov validity()

2.b.g - Gov auth
Allows the holder (menat to be the admin) to update the Gov UTxO datum.

« Policy ID: hash of Gov validator
« Token name: tokens.gov_auth()

2.b.g.a - PFP validity
Identifies the PFP UTxO.

« Policy ID: hash of PFP validator
+ Token name: tokens.pfp validity()

https://github.com/Yamfore/yamfore.contracts/blob/300f43062c5e261a70226bfccb3844876c16a15c/aik/validators/pfp.ak#L12
https://github.com/Yamfore/yamfore.contracts/blob/300f43062c5e261a70226bfccb3844876c16a15c/aik/lib/yamfore/types.ak#L18

2.b.h - PFP auth
The agent holding this token has the privilege to perform operations over the PFP UTxO. Meant to be
held by the admin.

« Policy ID: hash of PFP validator
+ Token name: tokens.pfp _auth()

2.b.i - USD oracle token
Identifies an oracle UTxO that holds a valid price of the stablecoin in ADA.

« Policy ID: defined with parameter usd_ora_hash in PF (Price Feed) validator
» Token name: defined with parameter usd ora name in PF validator

2.b.j - CBLP oracle token
Identifies an oracle UTxO that holds a valid price of CBLP in ADA.

+ Policy ID: defined with parameter cblp_ora_hash in PF validator
+ Token name: defined with parameter cblp_ora_name in PF validator

2.c - Transactions

2.c.a - Users

2.c.a.a - Borrow

A user borrows USD by locking ADA as collateral. The CBLPs paid in concept of fees are used to create

a CBLP Vault.

There could be more than one USD Vault in the inputs for satisfying the amount of USD that the user

wants to borrow. If there is a USD remainder, it is paid to a fresh vault.

Involved redeemers:

« Borrow: for spending a USD Vault

 Mint: for minting user auth and user validity tokens

« Pf2Red: for withdrawing Price Feed script

User UTxO

7

&
&

Value:
+ N ADA

+ M CBLP

USD Vault 1

Borrow

Borrow

Mint:
+1 user-validity
+1 user-auth

(&>
U
Address: Main script

Value:
+ X, USD

Datum:
+ UsdVault: ()

USD Vaultn

Borrow

Withdraws:
« Withdraw 0
from price_feed_hash

(®
N\
Address: Main script
Value:
+ X, USD
Datum:
+ UsdVault: ()

Gov UTxO @_

PFP UTxO @_

CBLP Oracle UTxO @_

USD Oracle UTxO @_

\.

User Position O
Address: Main script

Value:
+ N ADA
+ 1 user-validity
Datum:
+ Position: PositionP

CBLP Vault O
Address: Main script

Value:
+ M CBLP

Datum:
+ CblpVault: Int

USD Vault

Address: Main script

Value:
+ X7 +...+ X,,-X USD

Datum:
+ Usdvault: ()

User UTxO O

J

Value:
+ X USD

+ 1 user-auth

Note: PositionP = { created_at: Int, borrow_amt: Int, interest_rate: (Int, Int) }

Figure 1: Borrow transaction

2.c.a.b - Repay

User pays back borrowed USD and gets back its locked ADA.

The repaid USD can be used to create the desired amount of USD Vaults (up to 40 aprox).

Involved redeemers:

+ Repay: for spending a User Position

« Burn: for burning user auth and user validity tokens

e N

O

User UTxO ® Repay USD Vault 1
Value: Address: Main script

+ X USD it Value:

+ 1 user-auth Mint: +Y USD

-1 user-auth D
. atum:
User Position I~ Repay -l user-validity + UsdVault: ()
\/

Address: Main script
Value:

+ N ADA

+ 1 user-validity USD Vault n
Datum:

+ Position: PositionP

Address: Main script

Value:
+Y USD

Datum:
+ UsdVault: ()

User UTxO

O

Value:
+ N ADA

Note: PositionP = { created_at: Int, borrow_amt: Int, interest_rate: (Int, Int) }

Y=X/n

Figure 2: Repay transaction

2.c.a.c - Exchange CBLP

User exchanges USD for CBLP. CBLP can come from more than one CBLP Vault. The USD given by
the user are used to create a brand new USD Vault.

Involved redeemers:
« Exchange: for spending a CBLP Vault
« Pf2Red: for withdrawing Price Feed script

e N

User UTxO ® Exchange CBLP USD Vault O
Value: Address: Main script
+XUSD Value:
+ X USD
CBLP Vault 1 ® Exchange Datum:
Address: Main script Withdraws: + Usdvault: ()
Value: « Withdraw 0
+ M, CBLP from price_feed_hash CBLP Vault O
Datum: Address: Main script
+ CblpVault: Int Value:
Y M, + ...+ M,,-M CBLP
Datum:
+ CblpVault: Int
Exch
CBLP Vault n ® Xchange User UTxO o
Address: Main script
Value: Value: M CBLP
+ M, CBLP ’
Datum:

+ CblpVault: Int

Gov UTxO @_

PFP UTxO ®

CBLP Oracle UTxO @_

USD Oracle UTxO @_

Note: M = corresponding CBLP amount in exchange of X USD, based on Price Feed

Figure 3: Exchange CBLP transaction

10

2.c.a.d - Exchange ADA

Analogous with Exchange CBLP, the user gives USD in exchange of ADA. ADA Vaults are involved
instead of CBLP Vaults, which are spent with Exchange redeemer as well.

Involved redeemers:
« Exchange: for spending a ADA Vault
« Pf2Red: for withdrawing Price Feed script

e N

User UTxO ® Exchange ADA USD Vault O
Value: Address: Main script
+XUSD Value:
+ X USD
ADA Vault 1 ® Exchange Datum:
Address: Main script Withdraws: + Usdvault: ()
Value: « Withdraw 0
+ IN; CBLP from price_feed_hash ADA Vault O
Datum: Address: Main script
+ Adavault: () Value:
+N; + ...+ N,-N ADA
Datum:
+ Adavault: ()
Exch
ADA Vault n ® Xchange User UTxO o
Address: Main script
Value: Value: N ADA
+ N, CBLP ’
Datum:

+ Adavault: ()

Gov UTxO @_

PFP UTxO ®

CBLP Oracle UTxO @_

USD Oracle UTxO @_

Note: N = corresponding ADA amount in exchange of X USD, based on Price Feed

Figure 4: Exchange ADA transaction

11

2.c.a.e - Withdraw Main
A user performs a withdrawal on the Main script. The rewards must be used to create a ADA Vault

UTxO.

Involved redeemers:
« WithdrawFrom: for managing Main script stake rewards

r N\

Withdraw Main ADA Vault O
Value:
+ N ADA
Datum:
+ AdaVvault: ()
Withdraws:

« Withdraw N from Main

\ J

Figure 5: Withdraw Main transaction

12

2.c.b - Admin

2.c.b.a - Mint Main Auth token

Admin mints and receives the Main Auth token.

Involved redeemers:
+ AdminMint: for minting the Main auth token

Admin UTxO (seed) ® Init Main Admin UTxO
Value: N
Mint: + 1 m-aut
+1 m-auth

Figure 6: Mint Main Auth token transaction

2.c.b.b - Publish Main
Admin delegates the stake of the Main script address.

Involved redeemers:
« Publish: for managing the script certificate

S
Admin UTxO @ Publish Main Admin UTxO
Value: Value:
+ 1 m-auth + 1 m-auth
Certificates:
« Main

Figure 7: Publish Main transaction

2.c.b.c - Burn Main Auth token
Admin burns the Main auth token.

Involved redeemers:
+ AdminBurn: for burning the Main auth token

Admin UTxO ® Close Main
Value:
+ 1 m-auth Mint:
-1 m-auth

Figure 8: Burn Main Auth token transaction

13

2.c.c - Governance

2.c.c.a - Init Gov
Admin initializes the Governance UTxO. In the datum is stored some global parameters from the pro-
tocol, like the fees in CBLP. Is identified by a validity token.

Involved redeemers:
+ Gov2Init: for minting both Gov validity and auth tokens

s N

Admin UTxO (seed) ® Init Gov Gov UTxO O
Address: Gov script
fte Value:
Mint: L + 1 gov-validity
+1 gov-validity Datum:
+1 gov-auth + interest rate: (Int, Int)

+ cblp_fee: (Int, Int)
+ exchange reward: (Int, Int)

Admin UTxO O

Value:
+ 1 gov-auth

\. J

Figure 9: Init Gov transaction

2.c.c.b - Update Gov
Admin updates the Governance parameters stored in the Gov UTxO datum.

Involved redeemers:
+ Gov3Update: for spending the Gov UTxO

)
Gov3Updat
Gov UTxO ® ovsUpdate Update Gov Gov UTxO O
Address: Gov script Address: Gov script
Value: Value:
+ 1 gov-validity + 1 gov-validity
Datum: Datum:
+ interest rate: (Int, Int) +new_interest rate: (Int, Int)
+ cblp_fee: (Int, Int) + new _cblp fee: (Int, Int)
+ exchange_reward: (Int, Int) + new_exchange reward: (Int, Int)
Admin UTxO P~ Admin UTxO
® O
Value: Value:
+ 1 gov-auth + 1 gov-auth

Figure 10: Update Gov transaction

14

2.c.c.c - Close Gov
Admin closes the Gov UTxO by burning both validity and auth tokens.

Involved redeemers:
« Gov3Close: for spending the Gov UTxO
« Gov2Burn: for burning both Gov validity and auth tokens

e N

Pfp3Cl
Gov UTxO ® p3Close Close Gov
Address: Gov script
Value: o
+ 1 gov-validity Mint: o
Datum: -1 gov-validity
+interest rate: (Int, Int) -1 gov-auth

+ cblp_fee: (Int, Int)
+ exchange_reward: (Int, Int)

Admin UTxO o
&

Value:
+ 1 gov-auth

\. J

Figure 11: Close Gov transaction

15

2.c.d - Price Feed Pointer

2.c.d.a - Init PFP

Admin initializes the Price Feed Pointer (PFP), which will hold the current Price Feed (PF) script hash
in its datum. The PFP UTxO will also hold a token to identify it (validity token) that is twinned with
an auth token held by the admin.

Involved redeemers:
« Pfp2Init: minting of PFP validity and auth tokens

e N

Admin UTxO (seed) ® Init PFP PFP UTxO O

Address: PFP script
int: Value:

Mint: + 1 pfp-validity

Datum:

+1 pfp-auth + price_feed_hash: Credential

+1 pfp-validity

Admin UTxO O

Value:
+ 1 pfp-auth

Figure 12: Init PFP transaction

2.c.d.b - Update PFP
Admin updates the Price Feed (PF) script hash from the PFP UTxO datum.

Involved redeemers:
« Pfp3Update: for spending the PFP UTxO

)
Pfp3Updat
PFP UTxO @ pstpdate Update PEP PFP UTxO
Address: PFP script Address: PFP script
Value: Value:
+ 1 pfp-validity + 1 pfp-validity
Datum: Datum:
+ price feed hash: Credential + new_price feed hash: Credential
Admin UTxO @ Admin UTxO O
\/
Value: Value:
+ 1 pfp-auth + 1 pfp-auth
N—

Figure 13: Update PFP transaction

16

2.c.d.c - Close PFP
Admin closes the PFP UTxO by burning both validity and auth PFP tokens.

Involved redeemers:
« Pfp3Close: for spending the PFP UTxO
« Pfp2Burn: for burning both PFP validity and auth tokens

e N

Pfp3Cl
PFP UTxO @ LipsClose Close PEP

Address: PFP script

Value: .
+ 1 pfp-validity Mint:

Datum:
+ price feed hash: Credential -1 pfp-auth

-1 pfp-validity

Admin UTxO o
&

Value:
+ 1 pfp-auth

\. J

Figure 14: Close PFP transaction

17

3 - Audited Files

Below is a list of all files audited in this report, any files not listed here were not au-
dited. The final state of the files for the purposes of this report is considered to be commit
9671f5ae727ba8712f0e2100e16993e7c7ab8eea.

Filename
.Jaik/validators/m.ak
.Jaik/validators/gov.ak
.Jaik/validators/pf.ak
.Jaik/validators/pfp.ak
.Jaik/lib/yamfore/tokens.ak
./aik/lib/yamfore/functions.ak
./aik/lib/yamfore/utils.ak
./aik/lib/yamfore/types.ak

./aik/lib/yamfore/constants.ak

18

4 - Findings
D

YAM-001

YAM-002

YAM-101

YAM-301

YAM-302

YAM-303

YAM-304

YAM-305

YAM-306

YAM-307

Title

USD can be stolen in Borrow transaction
Exchange transaction: User can control
staking key of output vaults

Exchange transaction: Users can collect

too many ADA vaults, hurting vault avail-
ability

Simpler check for created_at

Exchange transaction: Inefficient check for
admin token

Exchange transaction: Incentive for users
to collect too many CBLP vaults, hurting

vault availability

Unneeded validity range restriction in
Borrow and Exchange

WithdrawFrom: Risk of double satisfac-
tion attack

No sanity checks for governance UTxO da-
tum

No sanity checks for price feeds

19

Severity Status

4.a - YAM-001 USD can be stolen in Borrow transaction

Category Commit Severity Status

Vulnerability ~ fedd8e020b25d4e2270a89df19fac1336a100c4b Critical Resolved

4.a.a - Description

USD can be stolen in Borrow transactions as it is not checked that USD leftovers are all paid to a new
USD vault.

4.a.b - Recommendation

When there’s a remainder of USD in the inputs for the amount borrowed by the user, assert the fol-
lowing:

usd _output _amt >= usd input _amt - borrow amt

4.a.c - Resolution

Resolved in PR #5

20

https://github.com/Yamfore/yamfore.contracts/pull/5

4.b - YAM-002 Exchange transaction: User can control staking key of output

vaults
Category Commit Severity Status
Vulnerability ~ fedd8e020b25d4e2270a89df19fac1336a100c4b Critical Resolved

4.b.a - Description

For the vault outputs (created USD, leftover CBLP/ADA), there is no check that the staking part of the
address is the own hash. The only check about the staking part is that it must be equal to that of the
0th own spend, but the 0th input could be fabricated by the user to contain any staking key he wants.
This way, a user can consume several ADA vaults and create a single big leftover ADA vault with a
staking key under his control.

4.b.b - Recommendation

Check that all vault outputs are paid to an address with staking part equal to the own script hash.

4.b.c - Resolution

Resolved in PR #6

21

https://github.com/Yamfore/yamfore.contracts/pull/6

4.c - YAM-101 Exchange transaction: Users can collect too many ADA vaults,
hurting vault availability

Category Commit Severity Status

Functionality = fedd8e020b25d4e2270a89df19fac1336a100c4b Major Resolved

4.c.a - Description
The exchange operation allows users to exchange USD for ADA tokens. To do this, ADA vaults are
consumed and USD vaults are created. If there are ADA leftovers, an ADA vault is created for them.

In current version, the validator doesn’t have any enabled check about the maximum amount of ADA
leftovers (only a commented check is present in line 318). The implication is that users can spend as
many ADA vaults as they want. In the extreme case, if the transaction is within protocol limits, they
can spend all available ADA vaults, collapsing them into a single one. This hurts ADA vaults availabil-
ity, limiting the amount of concurrent users the protocol can have.

4.c.b - Recommendation

A check that limits the amount of ADA leftovers is necessary.

The commented check in line 318 can be enabled to solve the worst case scenario of consuming all
ADA Vaults. Here, the leftover amount is limited by the max size of the input vaults. However, it might
not be sufficient to prevent more vault collapsing than needed.

A stronger check such as the one used in the borrow operation could be used (see line 482). In this
case, the amount of leftovers is limited by the average size of the input vaults, instead of the max.

4.c.c - Resolution

Resolved in commit 012b058

22

https://github.com/Yamfore/yamfore.contracts/blob/fedd8e020b25d4e2270a89df19fac1336a100c4b/aik/validators/m.ak#L318
https://github.com/Yamfore/yamfore.contracts/blob/fedd8e020b25d4e2270a89df19fac1336a100c4b/aik/validators/m.ak#L482
https://github.com/Yamfore/yamfore.contracts/commit/012b058dd826f8c06b594a01f7d516fa32de3c01

4.d - YAM-301 Simpler check for created_at

Category Commit

Simplification fedd8e020b25d4e2270a89df19fac1336a100c4b

4.d.a - Description

It is checked that it is at distance < 10000 from 1b.

4.d.b - Recommendation

Just check that it is equal to 1b.

4.d.c - Resolution

Resolved in PR #15

23

Severity

Info

Status

Resolved

https://github.com/Yamfore/yamfore.contracts/pull/15

4.e - YAM-302 Exchange transaction: Inefficient check for admin token

Category Commit Severity Status

Optimization fedd8e020b25d4e2270a89df19fac1336a100c4b Info Acknowledged

4.e.a - Description

The exchange transaction can spend several CBLP vaults. For each spent vault, it is checked that the
time lock is finished or the admin token is present (see m. ak:1224). To check for the admin token all the
inputs are traversed, and this is done repeatedly, one time for each vault. However, it is unnecessary
to repeat each time the search for the admin token, as the result is always the same.

4.e.b - Recommendation

Check for the presence of the admin token only once and save the result in a boolean variable.

4.e.c - Resolution

The project team decided not to resolve this finding. The optimization only applies to an admin action
that is expected to be extremely uncommon.

24

https://github.com/Yamfore/yamfore.contracts/blob/6f9a26fd4ff98cfb6430f69c71ec479a16dc083e/aik/validators/m.ak#L224

4.f - YAM-303 Exchange transaction: Incentive for users to collect too many
CBLP vaults, hurting vault availability

Category Commit Severity Status

Functionality = fedd8e020b25d4e2270a89df19fac1336a100c4b Info Resolved

4.f.a - Description

The exchange operation allows users to exchange USD for CBLP tokens. To do this, CBLP vaults are
consumed and USD vaults are created. If there are CBLP leftovers, a CBLP vault is created for them.

In current version, it is checked that the leftover amount must be smaller than the amount contained
in the biggest input vault. This check is not strong enough to prevent unnecessary spending of CBLP
vaults. Users can be interested in spending many CBLP vaults and collapse them into a single one
so they can take the remains of the collected min ADA. At the same time, they will be hurting vault
availability.

4.f.b - Recommendation

A stronger check such as the one used in the borrow operation could be used (see line 482). In this
case, the amount of leftovers is limited by the average size of the input vaults, instead of the max.

4.f.c - Resolution

Resolved in commit 9eef8e6

25

https://github.com/Yamfore/yamfore.contracts/blob/fedd8e020b25d4e2270a89df19fac1336a100c4b/aik/validators/m.ak#L482
https://github.com/Yamfore/yamfore.contracts/commit/9eef8e653163bf5ff07aa3688b4ab43b72b054dd

4.g - YAM-304 Unneeded validity range restriction in Borrow and Exchange

Category Commit Severity Status

Functionality =~ fedd8e020b25d4e2270a89df19fac1336a100c4b Info Resolved

4.g.a - Description

Both Borrow and Exchange transactions have a validity range restriction of 20 minutes, which is un-
necessary. Even more, this could hurt protocol responsiveness in case of network congestion (this
applies to Repay too).

4.g.b - Recommendation

Relax the upper bound restriction on Borrow and Exchange. It could be a half-open interval without
any vulnerability. For Repay can be considered an extension of the 20 minutes interval to one of several
hours for cases of network congestion.

4.g.c - Resolution

Resolved in commit 9eef8e6

26

https://github.com/Yamfore/yamfore.contracts/commit/9eef8e653163bf5ff07aa3688b4ab43b72b054dd

4.h - YAM-305 WithdrawFrom: Risk of double satisfaction attack

Category Commit Severity Status

Vulnerability ~ fedd8e020b25d4e2270a89df19fac1336a100c4b Info Acknowledged

4.h.a - Description

In the WithdrawFrom purpose of the main validator, there is risk for a double satisfaction attack if
the ADA vault output is used also to validate some other operation that has an ADA vault as its first
output.

Fortunately, current operations Borrow, Repay and Exchange doesn’t have an ADA vault as first out-
put, so the attack is not possible. But if Yamfore later introduces an operation that admits an ADA
vault as first output, the attack will be inadvertently enabled.

4.h.b - Recommendation

As the attack is not possible in current version, the recommendation is to take measures to prevent
involuntarily enabling it in the future.

4.h.c - Resolution

The project team acknowledged the finding and documented it as an “implicit global constraint”.

27

4.i - YAM-306 No sanity checks for governance UTxO datum

Category Commit Severity Status

Robustness fedd8e020b25d4e2270a89df19fac1336a100c4b Info Acknowledged

4.i.a - Description
The governance UTxO provides three important parameters for the protocol: interest_rate, cblp_fee
and exchange reward.

Currently, no checks are done on the values when the UTxO is created or when it is updated. If, by
accident or on purpose, some of these values are incorrectly updated, the protocol can be temporally
disabled or fatally vulnerable. As the parameters are rational numbers used as rates and fees, zero or
negative values must be avoided.

4.i.b - Recommendation

Add sanity checks for all the datum fields both in the creation and in the update of the Governance
UTxO.

For interest_rate it can be checked that both the numerator and the denominator are > 0.

For cblp fee it can be checked that the numerator is >= 0 and the denominator is > 0.

For exchange_reward it can be checked that both the numerator and the denominator are > 0. It may
also be checked that the rational number is >= 1 (numerator >= denominator).

4.i.c - Resolution

The project team decided not to resolve this finding. The recommended validation is not enough to
guarantee that harmful values will not be used. It is still responsibility of the admin to use reasonable
values for the parameters.

28

4.j - YAM-307 No sanity checks for price feeds

Category Commit Severity Status

Robustness fedd8e020b25d4e2270a89df19fac1336a100c4b Info Acknowledged

4.j.a - Description

No validation is done in the main validator about the price values provided by the oracles. Instead, the
validity check of the oracle information is delegated to the Price Feed withdraw validator. This valida-
tor is determined by the Price Feed Pointer UTxO and can be modified by the admin of the protocol.

The price information is highly sensitive and incorrect values can be fatal for the entire protocol. All
possible layers of validation of these values are desired. In particular, in the main validator only a basic
sanity check can be done to ensure that the provided values are > 0.

4.j.b - Recommendation

Every time the price feeds are used, add checks to ensure that for both prices the numerator and the
denominator are > 0. These checks can be added to the get pf red function that is used to retrieve
the price feeds from the corresponding redeemer.

4.j.c - Resolution

The project team decided not to resolve this finding. The recommended validation is not enough to
guarantee that harmful values will not be used, such as extremely high or low prices. It is still respon-
sibility of the Price Feed validator to provide values that correctly follow a price resolution protocol.

29

30

5 - Minor issues
In this section we list some issues we found that do not qualify as findings such as typos, coding style,
naming, documentation, etc. We used the Github issues system to report them.

« CBLP datum comment says “slot” but is “POSIX time” #7

« Unused n_vaults function #8

- main minting policy: can return last check instead of True #11
« borrow: redundant check that own datum is UsdVault #12

- rename max_vault_amt to show it refers to usd #13

« token name prefixes: add comment indicating they follow CIP 68 #14

31

https://github.com/Yamfore/yamfore.contracts/issues/7
https://github.com/Yamfore/yamfore.contracts/issues/8
https://github.com/Yamfore/yamfore.contracts/issues/8
https://github.com/Yamfore/yamfore.contracts/issues/8
https://github.com/Yamfore/yamfore.contracts/issues/11
https://github.com/Yamfore/yamfore.contracts/issues/12
https://github.com/Yamfore/yamfore.contracts/issues/13
https://github.com/Yamfore/yamfore.contracts/issues/14

6 - Appendix
6.a - Terms and Conditions of the Commercial Agreement

6.a.a - Confidentiality

Both parties agree, within a framework of trust, to discretion and confidentiality in handling the busi-
ness. This report cannot be shared, referred to, altered, or relied upon by any third party without Txpipe
LLC, 651 N Broad St, Suite 201, Middletown registered at the county of New Castle, written consent.

The violation of the aforementioned, as stated supra, shall empower TxPipe to pursue all of its rights
and claims in accordance with the provisions outlined in Title 6, Subtitle 2, Chapter 20 of the Delaware
Code titled “Trade Secrets,”, and to also invoke any other applicable law that protects or upholds these
rights.

Therefore, in the event of any harm inflicted upon the company’s reputation or resulting from the mis-
appropriation of trade secrets, the company hereby reserves the right to initiate legal action against the
contractor for the actual losses incurred due to misappropriation, as well as for any unjust enrichment
resulting from misappropriation that has not been accounted for in the calculation of actual losses.

6.a.b - Service Extension and Details

This report does not endorse or disapprove any specific project, team, code, technology, asset
or similar. It provides no warranty or guarantee about the quality or nature of the technol-
ogy/code analyzed.

This agreement does not authorize the client Big Blymp to make use of the logo, name, or any other
unauthorized reference to Txpipe LLC, except upon express authorization from the company.

TxPipe LLC shall not be liable for any use or damages suffered by the client or third-party agents, nor
for any damages caused by them to third parties. The sole purpose of this commercial agreement is the
delivery of what has been agreed upon. The company shall be exempt from any matters not expressly
covered within the contract, with the client bearing sole responsibility for any uses or damages that
may arise.

Any claims against the company under the aforementioned terms shall be dismissed, and the client
may be held accountable for damages to reputation or costs resulting from non-compliance with the
aforementioned provisions. This report provides general information and is not intended to
constitute financial, investment, tax, legal, regulatory, or any other form of advice.

Any conflict or controversy arising under this commercial agreement or subsequent agreements shall
be resolved in good faith between the parties. If such negotiations do not result in a conventional
agreement, the parties agree to submit disputes to the courts of Delaware and to the laws of that ju-
risdiction under the powers conferred by the Delaware Code, TITLE 6, SUBTITLE I, ARTICLE 1, Part
3 § 1-301. and Title 6, SUBTITLE II, chapter 27 §2708.

6.a.c - Disclaimer

The audit constitutes a comprehensive examination and assessment as of the date of report submission.
The company expressly disclaims any certification or endorsement regarding the subsequent perfor-
mance, effectiveness, or efficiency of the contracted entity, post-report delivery, whether resulting from
modification, alteration, malfeasance, or negligence by any third party external to the company.

The company explicitly disclaims any responsibility for reviewing or certifying transactions occurring
between the client and third parties, including the purchase or sale of products and services.

32

This report is strictly provided for informational purposes and reflects solely the due diligence con-
ducted on the following files and their corresponding hashes using sha256 algorithm:

Filename: ./aik/validators/m.ak
Hash: 144a368f0ca55acbbebd097bd606c42f2e49435d6b56c6c2f4e438964bbbcasl

Filename: ./aik/validators/gov.ak
Hash: {de9639a7bc4385117c9a4436ae9c88faf414ec2cfa5c7e35afba088159e8487

Filename: ./aik/validators/pf.ak
Hash: 4758a023d381e2b52f55e5bc21ea83387b3b43c1ba85ddb20e0359bc41b34a38

Filename: ./aik/validators/pfp.ak
Hash: b41c4da76543617647d4174£7f366297dfe416eea9c189fc5ee2b96d362e31ct

Filename: ./aik/lib/yamfore/tokens.ak
Hash: a464a1c0133828eb5668aealedefd18411e1b3cbb2e64624714665f183a23538

Filename: ./aik/lib/yamfore/functions.ak
Hash: cd43ef0e01£33f6860977¢e7a4c4df54fac7e3cc85a587a23990fTbcebfc61dea

Filename: ./aik/lib/yamfore/utils.ak
Hash: e2412de5ce29b830d1bd44a4ce8f409d3fdf5dbf8329eae6172f6916d521e5b2

Filename: ./aik/lib/yamfore/types.ak
Hash: 2f4328662aa2623f1aaa7d44601d14c281d39ab43c50b41cefa0cd0dc1025a6b

Filename: ./aik/lib/yamfore/constants.ak
Hash: 99752231e4ed565e030e1748e6759€499021ad9e¢9947b68e314e5aead42beeb9

TxPipe advocates for the implementation of multiple independent audits, a publicly accessible bug
bounty program, and continuous security auditing and monitoring. Despite the diligent manual review
processes, the potential for errors exists. TxPipe strongly advises seeking multiple independent opin-
ions on critical matters. It is the firm belief of TxPipe that every entity and individual is responsible
for conducting their own due diligence and maintaining ongoing security measures.

33

6.b - Issue Guide

6.b.a - Severity

Severity Description

Critical issues highlight exploits, bugs, loss of funds, or other vulnerabili-
ties that prevent the dApp from working as intended. These issues have no
workaround.

Major issues highlight exploits, bugs, or other vulnerabilities that cause unex-
pected transaction failures or may be used to trick general users of the dApp.

dApps with Major issues may still be functional.

Minor issues highlight edge cases where a user can purposefully use the dApp

Minor
in a non-incentivized way and often lead to a disadvantage for the user.
Info are not issues. These are just pieces of information that are beneficial to
Info the dApp creator. These are not necessarily acted on or have a resolution, they
are logged for the completeness of the audit.
6.b.b - Status
Status Description

Issues that have been fixed by the project team.

Issues that have been acknowledged or partially fixed by the project team.
Projects can decide to not fix issues for whatever reason.

Issues that have been identified by the audit team. These are waiting for a
response from the project team.

34

6.c - Revisions

This report was created using a git based workflow. All changes are tracked in a github repo and the
report is produced using typst. The report source is available here. All versions with downloadable
PDFs can be found on the releases page.

6.d - About Us

TxPipe is a blockchain technology company responsible for many projects that are now a critical part
of the Cardano ecosystem. Our team built Oura, Scrolls, Pallas, Demeter, and we’re the original home
of Aiken. We’re passionate about making tools that make it easier to build on Cardano. We believe that
blockchain adoption can be accelerated by improving developer experience. We develop blockchain
tools, leveraging the open-source community and its methodologies.

6.d.a - Links
« Website

o Email
o Twitter

35

https://typst.app
https://github.com/Yamfore/yamfore.contracts
https://github.com/Yamfore/yamfore.contracts/releases
https://github.com/oura
https://github.com/txpipe/scrolls
https://github.com/txpipe/pallas
https://demeter.run
https://aiken-lang.org
https://txpipe.io
hello@txpipe.io
https://twitter.com/txpipe_tools

	Summary
	Overview
	Process

	Specification
	UTxOs
	User Positions
	USD Vaults
	CBLP Vaults
	ADA Vaults
	Governance UTxO
	Price Feed Pointer UTxO

	Assets
	USD
	CBLP
	User validity
	User auth
	Main auth
	Gov validity
	Gov auth
	PFP validity

	PFP auth
	USD oracle token
	CBLP oracle token

	Transactions
	Users
	Borrow
	Repay
	Exchange CBLP
	Exchange ADA
	Withdraw Main

	Admin
	Mint Main Auth token
	Publish Main
	Burn Main Auth token

	Governance
	Init Gov
	Update Gov
	Close Gov

	Price Feed Pointer
	Init PFP
	Update PFP
	Close PFP

	Audited Files
	Findings
	YAM-001 USD can be stolen in Borrow transaction
	Description
	Recommendation
	Resolution

	YAM-002 Exchange transaction: User can control staking key of output vaults
	Description
	Recommendation
	Resolution

	YAM-101 Exchange transaction: Users can collect too many ADA vaults, hurting vault availability
	Description
	Recommendation
	Resolution

	YAM-301 Simpler check for created_at
	Description
	Recommendation
	Resolution

	YAM-302 Exchange transaction: Inefficient check for admin token
	Description
	Recommendation
	Resolution

	YAM-303 Exchange transaction: Incentive for users to collect too many CBLP vaults, hurting vault availability
	Description
	Recommendation
	Resolution

	YAM-304 Unneeded validity range restriction in Borrow and Exchange
	Description
	Recommendation
	Resolution

	YAM-305 WithdrawFrom: Risk of double satisfaction attack
	Description
	Recommendation
	Resolution

	YAM-306 No sanity checks for governance UTxO datum
	Description
	Recommendation
	Resolution

	YAM-307 No sanity checks for price feeds
	Description
	Recommendation
	Resolution

	Minor issues
	Appendix
	Terms and Conditions of the Commercial Agreement
	Confidentiality
	Service Extension and Details
	Disclaimer

	Issue Guide
	Severity
	Status

	Revisions
	About Us
	Links

