

Yamfore
Whitepaper

By Big BLYMP

This page has been left intentionally blank

Contents

Contents.. 2

I. Introduction... 4

For users... 5
For Admins... 7

II. Constants..9

III. Tokens... 10

IV. Externals... 12

V. Validators..14

PF: Price Feed... 15

Datatypes... 15

Constraints.. 15

Notes.. 16

PFP: Price Feed Pointer... 17

Datatypes..17

Constraints...17

Gov: Governance.. 18

Datatypes... 19

M: Main... 19
Datatypes... 20

Constraints... 20

Notes...24

VI. Functions... 25

Rationals*... 25

Fees, collateral, and repayment...26

In validators..27

Other.. 28

VII. Examples.. 29

Example A...29

VIII. Transactions...30

`tx.pfp_init`...31

​ ​ 2

`tx.pfp_update`...31

`tx.pfp_close`.. 32

`tx.gov_init`...33

`tx.gov_update`...33

`tx.gov_close`... 33

`tx.m_init`...33

`tx.m_publish`.. 34

`tx.m_close`... 34

`tx.borrow`... 35

`tx.repay`...37

`tx.exchange_cblp`...38

`tx.exchange_ada`... 39

`tx.m_withdraw`..39

IX. Comments... 41

Weaknesses... 41

X. Appendix.. 43

Glossary...43

Documentation Issues...43

​ ​ 3

I. Introduction
Yamfore is a decentralized, non-custodial lending protocol built on the

Cardano blockchain. It enables users to obtain crypto-backed loans using

ADA, with the following features:

●​ No margin calls: Users' loans won't be liquidated due to price

volatility.

●​ No ongoing interest payments: Borrowers only pay a fixed fee.

●​ Indefinite loan terms: Loans don’t expire unless the borrower

chooses to repay.

CBLP is the native utility token of the protocol, used to pay loan fees and

maintain system operations. Users acquire CBLP before borrowing, either

through external platforms or protocol-specific mechanisms like auctions.

This document includes:

1.​ A plain explanation of the dApp's functionality.

2.​ Technical details, such as validators, constants, tokens, and

transactions (tx).

3.​ Commentary on limitations and additional terms.

Throughout this document, we will refer to the stablecoin as USD as a

convenient shorthand.

Non-technical litepaper can be found here, and other documents can be

found here.

​ ​ 4

https://yamfore.medium.com/yamfore-litepaper-77808558b071
https://yamfore.gitbook.io/yamfore/introduction/faq

For users

The primary function of the dApp is to facilitate ADA-backed stablecoin

loans. Users interact with the protocol through two main processes:

borrowing and repayment.

Borrowing USD

When a user initiates a borrow transaction:

●​ USD Availability: The user receives USD, collateralized by locked ADA.

●​ Collateralization: The ADA is locked as collateral.

●​ Fee Payment: The user pays a fee in CBLP (the native utility token).

●​ Token Minting: Two tokens are minted to represent validity and

authorization:

○​ One token is held with the collateral.

○​ The other is provided to the user.

The required fee and collateral amounts are determined by:

●​ Loan Size: The total USD borrowed.

●​ Price Feed Data: Real-time exchange rates (ADA/USD and

CBLP/ADA).

●​ Governance Parameters: Protocol-defined constants and rates.

​ ​ 5

Repaying Loans

When a user repays their loan:

●​ USD Repayment: The user deposits the borrowed USD at the script

address.

●​ Collateral Unlocking: The locked ADA collateral becomes available

to the user.

●​ Token Burning: Validity and authorization tokens are burned.

The repayment amount is calculated based on:

●​ Loan Size: The total USD borrowed.

●​ Loan Duration: The time elapsed since borrowing.

●​ Governance Parameters: Protocol-defined rates and adjustments.

Acquiring CBLP

Before borrowing, users must acquire CBLP. This can be achieved through:

●​ External Platforms: Purchasing CBLP on a decentralized exchange

(DEX).

●​ Protocol Mechanisms: Acquiring CBLP via the First Token Offering

(FTO) or auction portal (out-of-scope for V2 testnet).

●​ Internal Exchange: Exchanging USD for CBLP or ADA directly through

the protocol.

​ ​ 6

Deposit Staking and Rewards

All deposits made to the protocol are staked under the script credentials.

Key details include:

●​ Reward Accumulation: Staked deposits earn rewards over time.

●​ Reward Withdrawal: Users can withdraw rewards to the script

address.

●​ Collateral Exchange: Locked ADA can be exchanged or withdrawn as

necessary.

For Admins

Administrators are integral to the functionality and sustainability of the

Yamfore protocol. They oversee tasks such as token creation, governance,

price feed management, interest rate maintenance, and stablecoin

integration, which ensure the smooth operation and adaptability of the

dApp.

CBLP Management

●​ Creation: Admins are responsible for the creation and management

of CBLP, the native utility token. While the token has already been

created, it may need to be reenacted for testing purposes during

deployments.

●​ FTO Organization: Admins organize the First Token Offering (FTO),

which operates as a single-batch, non-refundable auction.

​ ​ 7

○​ Funds raised through the FTO are funneled into the auction

portal (these mechanisms are outside the scope of the V2

testnet).

Price Feed Management

●​ Data Requirements: The dApp relies on near real-time exchange rate

data for USD, ADA, and CBLP.

●​ Reliability: Admins ensure that price feeds remain accurate and

accessible, sourcing data from external validators or platforms.

●​ Upgrade Capability: Admins can upgrade the price feed wrapper,

which uses data sources likely external to the dApp, to address

issues with unreliable sources and ensure the protocol’s resilience.

Staking Management

●​ Locked ADA: ADA collateral from loans is staked, and Admins are

responsible for delegating this collateral to appropriate pools.

●​ Maximizing Returns: Proper staking management ensures optimal

returns while maintaining system integrity.

Stablecoin Integration

●​ Selection: Admins determine which stablecoins are eligible for use

within the protocol, considering the growing variety available on the

Cardano network.

​ ​ 8

●​ Infrastructure Setup: Both on-chain and off-chain mechanisms

necessary for stablecoin interaction are initialized and maintained

by Admins.

Through these critical roles, Admins ensure that Yamfore remains stable,

secure, and responsive to the needs of its users and the broader

ecosystem.

II. Constants
These constants are referenced at various points in the dApp:

tag_length = 20
short_time = 20 * 60 * 1000 // 20 minutes
max_usd_vault_amt = 50_000_000_000 // $50,000
max_vault_outputs = 10
epsilon = 10

​ ​ 9

III. Tokens

The following describes the token names:

// CIP68 style prefixes
auth_pref = #"000643b0" // cip68 "222"
validity_pref = #"000de140" // cip68 label "100"

// Already exists
cblp_label = "CBLP"

// Gov auth/validity
gov_label = "gov"
gov_auth = auth_pref + gov_label
gov_validity = validity_pref + gov_label

// Placeholder for stablecoin name
usd = "usd"

// Pfp auth/validity
pfp_label = "pfp"
pfp_auth = auth_pref + pfp_label
pfp_validity = validity_pref + pfp_label

// Main auth
admin = "admin"

// Main user auth/validity
user_label = "yamfore"
user_auth = auth_pref + user_label + <tag>
user_validity = validity_pref + user_label + <tag>

​ ​ 10

Each pair of user twin tokens uses an input utxo oref as a seed to create an

essentially unique tag `<tag>`.

The function `mk_tag : OutputReference -> Tag` uses `blake2b_256` plutus

builtin as a hash function, and truncates the result to a 20-byte (set by

`constants.tag_length`) (160-bit) digest. It leaves 12 bytes of space in token

names for human-friendly labels.

An explanation of why we use cip68 labels while not being cip68 compliant

can be found here.

​ ​ 11

https://github.com/cardano-foundation/CIPs/blob/719693059eed7e512a1b9447c3c63d1fec810afd/CPS-xxxx/README.md

IV. Externals

The Yamfore dApp relies on several on-chain external validators to support

its operations. These external components provide crucial data and

functionality that, while outside the direct control of Yamfore, are essential

to the protocol’s effectiveness.

CBLP Integration

CBLP, the native utility token of Yamfore, is treated as an external

component for specific purposes. Although directly tied to the protocol,

CBLP exists on the Cardano mainnet and can appear "hardcoded" in

validators. For testing scenarios, treating CBLP as a variable offers greater

flexibility, enabling simulations and adjustments as needed.

Exchange Rates

The protocol requires near real-time exchange rate data for the following

pairs:

●​ ADA/USD: Exchange rate between ADA and USD.

●​ ADA/CBLP: Exchange rate between ADA and CBLP.

These rates can be sourced by analyzing liquidity pools (LPs) from

decentralized exchanges (DEXs), such as Minswap. Accurate and

up-to-date exchange rate data is critical for ensuring the reliability of

calculations involving borrowing, repayment, and collateral requirements.

​ ​ 12

Upgradable Data Layer

Given the reliance on external data sources, the dApp incorporates an

upgradable layer between these sources and its internal operations. This

layer is designed to:

●​ Handle Unreliable Sources: Ensure the protocol remains operational

even if a specific data source becomes unavailable or inaccurate.

●​ Enable Adaptability: Allow admins to update or replace data

sources as required, maintaining the dApp’s integrity and reliability.

By effectively leveraging external validators and maintaining a robust

interface for data integration, Yamfore ensures consistent functionality

while adapting to changes within the Cardano ecosystem.

​ ​ 13

V. Validators
The on-chain component of the Yamfore dApp consists of multiple

validators, each performing specific roles within the protocol. These

validators may interact and rely on one another, forming a network of

dependencies that is critical for the dApp’s functionality.

Dependency Types

●​ Hard-Dependency: A validator is considered hard-dependent on

another when its hash is explicitly "hard-coded" into the dependent

validator. This creates a fixed relationship between the two.

●​ Soft-Dependency: In a soft dependency, one validator relies on

another, but the dependency is flexible and can be modified if

necessary.

Acyclic Dependency Graph

To ensure system integrity and prevent circular logic, the graph of

hard-dependencies must remain acyclic. This means:

●​ If Validator A is hard-dependent on Validator B, then Validator B

cannot, directly or indirectly, be hard-dependent on Validator A.

●​ Soft dependencies, however, allow Validator B to rely on Validator A

without violating this principle.

This structure ensures that the validators operate in a clear, logical

sequence, maintaining the protocol’s stability and predictability.

​ ​ 14

mermaid
flowchart LR
 gov["
 Gov : Governance \n
 Spend, Mint
 "]
 pfp["
 Pfp : PriceFeedPointer\n
 Spend, Mint
 "]
 pf["
 Pf : PriceFeed\n
 Withdraw
 "]
 m["
 M : Main \n
 Spend, Mint, Withdraw, Publish
 "]
 gov & pfp --> m
 pf -.-> pfp & m

PF: Price Feed
The validator checks the presence of the necessary oracles and verifies

that its own redeemer matches the exchange rate attested to by the

oracle(s).

Datatypes

See the section on functions for explanations of how this is used.

aiken-language
type Pf2Red {
 c_num : Int,
 c_denom : Int,
 u_num : Int,
 u_denom : Int,
}

Constraints

Two arguments - Withdraw purpose.

​ ​ 15

Redeemer is `Pf2Red`:

1.​ Ascertain the true exchange rates from oracles or otherwise.
2.​ The numbers in the redeemer correspond to them.

Notes

We implement a few different versions.

Datum version: Loosely modelled on orcfax and uses reference inputs to

discern correctness. We currently do not have an oracle system on which

we can depend so we have implemented our own skeletal form for testing.

This is the default implementation, with the label `pf`.

The script is parameterized by the hashes of the oracles. Reference inputs

are identified by containing a recognized token.

Signature version: Relies on a trusted signature to have signed the

redeemer. If there is a usable oracle on mainnet at launch, this is the

suggested first implementation. This implementation has the label

`pf_sig`.

Because the redeemer has been designed with the main script in mind,

it does not accommodate the additional data needed to carry out

validation. Namely, a time stamp and signature.

To work around this, we supply the additional data via the redeemer of a

second withdraw script. The second script does nothing.

​ ​ 16

`pf_sig` checks that:

●​ The pf redeemer has been signed off together with the time stamp

●​ The timestamp is within the short tx validity range

Emergency version: Relies on a trusted signature on the tx. The label is

`pf_em`.

PFP: Price Feed Pointer
This spend/mint validator 'points' at the PF. The pointer consists of a utxo

with an inline datum recording the current PF script hash. The utxo contains

a validity token twinned with one held by admin.

Datatypes

Outlined below:

aiken-language
type PfpParams = OutputReference
type PfpDat = Credential
type Pfp3Red {
 Pfp3Update(Int, Int)
 Pfp3Close
}
type Pfp2Red {
 Pfp2Init
 Pfp2Burn
}

Constraints

Two arguments - Mint purpose:

1.​ When `red` is `Pfp2Init`

a.​ `PfpParams` is spent

​ ​ 17

b.​ Own mint value is

i.​ (erp-auth, 1)

ii.​ (erp-validity, 1)

c.​ 0th output is continuing output:

i.​ Payment address is own

ii.​ Value is ADA and erp-validity

iii.​ Datum is `PfpDat`

2.​ When `red` is `Pfp2Burn`

a.​ Own mint has only negative quantities

Three arguments:

1.​ When `red` is `Pfp3Update(auth_idx, cont_idx)`

a.​ Output `auth_idx` is auth output _ie_ contains erp-auth

b.​ Output `cont_idx` is continuing output

i.​ Payment address is own

ii.​ Value is ADA and erp-validity

iii.​ Datum is `PfpDat`

2.​ When `red` is `Pfp3Close`

a.​ Own mint value has length 2. (Implies both tokens are burnt)

Gov: Governance

The `gov` validator's behaviour is identical to that of the `pfp`. Note that the

`pfp` datum plays no role in its own constraints. `gov` has a different datum,

stated here. We omit repeating the other parts.

​ ​ 18

Datatypes

aiken-language
// TODO
type GovDat {
 interest_rate: (Int, Int),
 cblp_fee: (Int, Int),
 exchange_reward: (Int, Int),
}

M: Main

The main validator can be sensibly invoked with any purpose: spend, mint,

withdraw, publish.

There are:

●​ Four spend actions all intended for users:

○​ Borrow,

○​ Repay,

○​ Exchange ADA,

○​ Exchange CBLP.

●​ Two mint actions intended for users:

○​ Mint,

○​ Burn.

●​ Two mint actions intended for admin:

○​ AdminMint,

○​ AdminBurn.

●​ A single withdraw action:

○​ Withdraw.

●​ A single publish action:

​ ​ 19

○​ Publish.

Datatypes

Constraints

Three arguments:

1.​ When own redeemer is `Borrow`:
a.​ Own mint value is `[(_, 1), (_, 1)]`

2.​ When own redeemer is `Repay(n_vaults)`:

​ ​ 20

aiken-language
type MParams {
 admin_seed: OutputReference,
 gov_hash: ByteArray,
 pfp_hash: ByteArray,
 cblp_hash: ByteArray,
 usd_hash: ByteArray,
}
type MRed2 {
 Mint(OutputReference) // Tag seed
 Burn
 AdminMint
 AdminBurn
 Withdraw
 Publish
}
type MRed3 {
 Borrow
 Repay(Int) // n_vaults
 Exchange
}
type MDat {
 UsdVault
 CblpVault(Int) // Available from slot
 AdaVault
 Position(PositionP)
}
type PositionP {
 created_at : Int,
 borrow_amt : Int,
 interest_rate : (Int, Int),
}

a.​ Own datum is `Position({created_at, borrow_amt,
interest_rate})`

b.​ No other inputs with own payment credential.
c.​ Validity range has upper bound `ub`
d.​ Calculate duration `duration = ub - created_at`
e.​ 0th output is repayment output

i.​ Address is own address
ii.​ Value is ada and `repay_amt` of USD
iii.​ Datum is `UsdVault`

f.​ If `n_vaults > 1`, then then next `n_vaults - 1` outputs are
identical

g.​ If `n_vaults < max_n_vaults`, then `amt < max_usd_vault_amt`
h.​ `total_repay_amt = n_vault * repay_amt`
i.​ Verify sufficient repay amount
j.​ Get own tag `tag`
k.​ Own mint value is `[(user_auth_<tag>, -1),

(user_validity_<tag>, -1)]`
3.​ When own redeemer is `Exchange`:

a.​ All own spends are `Exchange`, implied by own mint value is
empty

b.​ Defer all validation to 0th own spend
c.​ Get gov params from ref inputs via gov token
d.​ Get price feed data
e.​ 0th output is USD vault output

i.​ Address is own address
ii.​ Value is ADA and `usd_out`
iii.​ Datum is `UsdVault`

f.​ If own datum is `CblpVault(_)` then
i.​ Validity interval has lower bound `lb`
ii.​ Reduce `own_inputs` to `(total, count)`

1.​ All `own_inputs` have datum `CblpVault(from)`
2.​ Either `from <= lb`, or admin token is spent
3.​ All value is ADA and CBLP

iii.​ Calculate expected leftover amount `o_expect`
iv.​ If `o_expect <= epsilon`, then return true, else 1st output is

leftover output
1.​ Address is own address

​ ​ 21

2.​ Value is at least `o_expect` CBLP
3.​ The are no unnecessary vault inputs (proxy by

average)
4.​ Datum is `CblpVault(0)`

g.​ Else own datum is `AdaVault`
i.​ Reduce `own_inputs` to `(total, count)`

1.​ All `own_inputs` have datum `AdaVault`
2.​ All value is only ADA

ii.​ Calculate expected leftover amount `o_expect`
iii.​ If `o_expect <= epsilon`, then return true, else 1st output is

leftover output
1.​ Address is own address
2.​ Value is at least `o_expect` ADA
3.​ The are no unnecessary vault inputs (proxy by

average)
4.​ Datum is `AdaVault`

Two arguments - Mint purpose:

1.​ When own redeemer is `Mint(seed):
a.​ Get gov params from ref inputs via gov token
b.​ Get price feed data
c.​ `seed` is spent
d.​ Make tag `tag` from `seed`
e.​ Fold over inputs

i.​ Filter own payment credential
ii.​ Expect only `UsdVault` datums
iii.​ Aggregate `(count, usd_input_amt)`

f.​ Validity range has lower bound `lb`
g.​ 0th output is position

i.​ Address is own address
ii.​ Value is `collateral` ADA and validity token with tag `tag`
iii.​ Datum is `Position({ created_at : lb, interest_rate :

gov_dat.interest_rate, borrow_amt })`
iv.​ Verify sufficient collateral

h.​ 1st output is fee output

​ ​ 22

i.​ Address is own address
ii.​ Value is ADA and `fee_amt` CBLP
iii.​ Datum is `CblpVault(lb)`
iv.​ Verify sufficient fee

i.​ If `usd_input_amt > borrow_amt` then, next output is USD vault
output

i.​ Address is own address
ii.​ Value is ADA and `usd_output_amt` USD.
iii.​ Datum is `UsdVault`
iv.​ No redundant inputs `usd_output_amt <=

usd_input_amt / count`
j.​ Own mint value is `[(user_auth_<tag>, 1), (user_validity_<tag>,

1)]`
2.​ When own redeemer is `Burn`:

a.​ Own mint value is of the form `[(user_auth_<tag>, -1),
(user_validity_<tag>, -1)]`

3.​ When own redeemer is `AdminMint`
a.​ `params.admin_seed` is spent
b.​ Own mint value is `[(admin, 1)]`

4.​ When own redeemer is `AdminBurn`
a.​ Own mint value is `[(admin, -1)]`

5.​ Otherwise, fail

Two arguments - Withdraw purpose:

1.​ Redeemer is `Withdraw` (else fail)
2.​ Own withdraw amount is `amt`
3.​ 0th output is ADA vault output

a.​ Address is own address
b.​ Value is ADA of at least `amt`
c.​ Datum is `AdaVault`

Two arguments - Publish purpose:

1.​ Redeemer is `Publish` (else fail)
2.​ Input contains own admin token

​ ​ 23

Notes

1.​ Some spending logic is deferred to mint.

There are some global constraints utilized here to ensure only certain pairs

of mint and actions are performed in a tx. Namely, assumptions made on

which logic is executed based on the form of the mint value.

For example, spending `UsdVault` checks own mint value of the form `[(_,1),

(_, 1)]`. We know this can only be the case if the validator is executed with

mint purpose and redeemer `Borrow`.

Explicit coupling:

●​ + Spend:Borrow => Mint:Mint

●​ + Spend:Repay => Mint:Burn

●​ + Spend:Exchange => None

2.​ The withdrawal purpose enforces the 0th output as an AdaVault.

No other tx permits a 0th output as an AdaVault. This prevents a double

satisfaction.

​ ​ 24

VI. Functions

Rationals*

*Note: this works like Obymare.

Suppose `u` is a rational number representing USD to ADA conversion. It

can be read as _ada per dollar_. That is, `u lovelace = 1 microdollar`,

equivalently `u ada = 1 dollar`.

Suppose `c` is a rational number representing CBLP to ADA conversion. That

is, `c lovelace = 1 microcbpl`, equivalently `c ada = 1 cblp`. The task of

describing the constraints is made mildly more laborious in the absence of

rationals.

However, it is well beyond our needs to introduce full support for rationals.

Let us represent the rational `a` as a 2-tuple, `a = (a_num, a_denom)`, and

assume `a_denom > 0`. Thus, for example, if `x` amount of ADA is equivalent

to `y` amount of USD then `u_denom * x == u_num * y`.

Suppose we have A ADA and C CBLP.

Then the value U in USD is:

$$
 U = \frac{A + Cc}{u}
$$

Expressed in code, this conversion is:

 usd = (ada * c_denom + cblp * c_num) * u_denom / (u_num *
c_denom)

​ ​ 25

Fees, collateral, and repayment
Suppose a user does borrow from the dApp with the following quantities:

●​ B borrowed amount, measured in USD
●​ C required collateral amount, measured in ADA
●​ u the exchange rate USD to ADA (ie u ADA is equivalent to 1 USD)
●​ F required fee amount, measured in CBLP
●​ c the exchange rate CBLP to ADA (ie c ada is equivalent to 1

CBLP)
●​ f the fee rate (TODO : Be precise)
●​ D the duration between borrowing and repayment (TODO : what

units?)
●​ i the (non-cumulative) interest rate at time of borrowing (TODO :

what units?)
●​ R repay amount, measured in USD

Satisfying the minimum collateral requirement:
$$
 C = 2Bu
$$

Satisfying the minimum fee requirement:
$$
 F = \frac{fC}{c}
$$

Satisfying the minimum repayment requirement:
$$
 R = (1 + i D)B
$$

Suppose a user does an exchange with the dApp with the following
quantities:

●​ E the input amount, measured in USD
●​ r the exchange reward

​ ​ 26

●​ I input from vaults, in either ADA or CBLP
●​ O output to vaults, in either ADA or CBLP

In the ADA case:
$$
 O = I - ruE
$$

In the CBLP case:
$$
 O = I - ruE/c
$$

In validators

Here we relabel some variables:
●​ B `borrowed`
●​ C `collateral`
●​ F `fee`
●​ D `duration`

We 'flatten' the formulae and express them as an inequality, checking the
sufficient.

Sufficient collateral requirement:

 collateral * u_denom >= 2 * u_num * borrowed

Sufficient fee requirement:

 fee * c_num * f_denom >= f_num * collateral * c_denom

Sufficient repayment requirement:

​ ​ 27

 repay * i_denom >= (i_denom + i_num * duration) * borrowed

In an exchange, the leftover output exists only if the expected leftover
output amount is positive. Thus, it is easier overall to compute this value
explicitly than check if an inequality is satisfied.

Expected leftover output is:

expect_ada = i_ada - (r_num * u_num * exchanged_usd) /
(r_denom * u_denom)

expect_cblp = i_cblp - (c_denom * r_num * u_num *
exchanged_usd) / (c_num * r_denom * u_denom)

Other
Calculate the number `n_vaults` of USD vault outputs and the amount
`amt` of USD in each. Let `total_usd` be the total USD.

Then:

n_vaults = min(max_vault_outputs, total_usd/max_usd_vault_amt
+ 1)

amt = total_usd/n_vaults + 1

The following constraint is used in several places: The are no unnecessary
vault inputs (proxy by average). By this, we mean that the value of the
tokens returned must be no more than the average input.

 change_amt <= total_amt / n_inputs

In the utxo selection find a set of vaults that cover the desired value, then
remove the utxos of the least value until this condition is satisfied.

​ ​ 28

VII. Examples

Example A
Let:

●​ $B = 10_000_000_000$, equivalent to \$10,000
●​ $u = 7/3$, equivalent 2.3333 ADA/USD
●​ $c = 5629/250000$ equivalent to 0.022516 ADA/CBLP the

exchange rate CBLP to ADA
●​ $f = 19/100$, a fee rate of 19%
●​ $D = 600 * 24 * 60 * 60 * 1000$ 600 day duration
●​ $i = 1/(25 * 365 * 24 * 60 * 1000)$ is 4% non-cumulative annual

interest rate at the time of borrow

Then the collateral is:

$$
 C = 2 * 10_000_000_000 * 7 /3 = 46_666_666_666
$$

About $47k$ ADA.

The fee:

$$
 F = 19 * 46_666_666_6666 * 250000 / 100 * 5629 =
 393_794_042_758
$$

$$
 R = (25 * 365 + 600) * 10_000_000_000 / 25 * 365 =
 10_657_534_245
$$

​ ​ 29

VIII. Transactions
A transaction consists of inputs and outputs of utxos*. Each utxo has a:

●​ Unique reference

●​ An address it belongs to

●​ A value of ADA + native assets (possibly no native assets)

●​ Maybe a datum or datum hash

*Note that a utxo at a script address must have a datum or datum hash to be spendable.

Addresses correspond to either agents (e.g., normal addresses) or script

addresses. All transactions must have at least one input that belongs to a

payment address, i.e., an agent’s address. When there are no constraints

as to who the payment address belongs to, we may write _Any_ as the

address owner.

Addresses, unless otherwise stated, refer to only the payment credential

while the staking credential is unrestricted. The diagrams should be

indicative and informative rather than provide an exhaustive description.

In the following diagrams, boxes denote utxos. The address’s owners are

stated first, followed by any notable assets or ada (that is, ignoring min

ada or ada value doesn’t change or change is negligible) and datums

where relevant. All datums are assumed inline unless stated otherwise. A

download icon indicates withdrawals.

​ ​ 30

`tx.pfp_init`

Admin initializes the pointer, creating validity/auth twins. This tx is

seeded to ensure that the policy IDs and script address cannot be

duplicated.

mermaid
flowchart LR
 i_admin["
 fa:fa-address-book Admin\n
 oref: seed
 "]
 s_pfp["
 fa:fa-circle PFP\n
 params: seed
 "]

 m["tx"]

 o_pfp["
 fa:fa-address-book PFP\n
 fa:fa-circle pfp-validity \n
 fa:fa-database PfpDat
 "]

 o_admin["
 fa:fa-address-book Admin\n
 fa:fa-circle pfp-auth \n
 "]
 i_admin--> m --> o_pfp & o_admin
 s_pfp -.->|Pfp2Init| m

`tx.pfp_update`

Admin updates the pointer datum.

mermaid
flowchart LR
 i_pfp["
 fa:fa-address-book PFP\n
 fa:fa-circle pfp-validity \n
 fa:fa-database PfpDat
 "]

​ ​ 31

 i_admin["
 fa:fa-address-book Admin\n
 fa:fa-circle pfp-auth \n
 "]

 m["tx"]

 o_pfp["
 fa:fa-address-book PFP\n
 fa:fa-circle pfp-validity\n
 fa:fa-database PfpDat
 "]

 o_admin["
 fa:fa-address-book Admin\n
 fa:fa-circle pfp-auth\n
 "]

 i_pfp -->|Pfp3Update| m
 i_admin --> m --> o_pfp & o_admin

`tx.pfp_close`

Admin closes the pointer datum, and burns auth/validity tokens.

mermaid
flowchart LR
 i_pfp["
 fa:fa-address-book PFP\n
 fa:fa-circle pfp-validity \n
 fa:fa-database PfpDat
 "]

 s_pfp["
 fa:fa-circle PFP\n
 "]

 i_admin["
 fa:fa-address-book Admin\n
 fa:fa-circle pfp-auth \n
 "]

 m["tx"]

 i_admin --> m

​ ​ 32

 i_pfp -->|Pfp3Close| m
 s_pfp -->|Pfp2Burn| m

`tx.gov_init`

This is analogous to the `tx.pfp_init`.

`tx.gov_update`

This is analogous to the `tx.pfp_update`.

`tx.gov_close`

This is analogous to the `tx.pfp_close`.

`tx.m_init`

Admin inits the main validator, minting the auth token.

mermaid
flowchart LR
 i_admin["
 fa:fa-address-book Admin\n
 oref: seed
 "]

 s_m["
 fa:fa-circle M\n
 params: seed ...
 "]

 m["tx"]

 o_admin["
 fa:fa-address-book Admin\n
 fa:fa-circle m-auth \n
 "]

 i_admin--> m --> o_admin

​ ​ 33

 s_m -.->|AdminMint| m

`tx.m_publish`

Admin delegates, re-delegates, or un-delegates the stake address. The

auth token must be spent.

mermaid
flowchart LR
 i_admin["
 fa:fa-address-book Admin\n
 fa:fa-circle m-auth \n
 "]

 p_m["
 fa:fa-download M\n
 "]

 m["tx"]

 o_admin["
 fa:fa-address-book Admin\n
 fa:fa-circle m-auth \n
 "]

 i_admin--> m --> o_admin
 p_m -.->|Publish| m

`tx.m_close`

Admin delegates, re-delegates, or un-delegates the stake address. The

auth token must be spent.

mermaid​
 flowchart LR​
 ​ i_admin["​
 ​ fa:fa-address-book Admin\n​
 ​ fa:fa-circle m-auth \n​
 ​ "]​
​
 ​ p_m["​

​ ​ 34

 ​ fa:fa-circle M\n​
 ​ "]​
​
 ​ m["tx"]​
​
 ​ o_admin["​
 ​ fa:fa-address-book Admin\n​
 ​ "]​
​
 ​ i_admin--> m --> o_admin​
 ​ p_m -.->|AdminBurn| m

`tx.borrow`

The user borrows USD while locking up ADA as collateral. The tx must

reference governance and price feed data.

This example spends from two USD vaults:

mermaid
flowchart LR
 i_user["
 fa:fa-address-book User\n
 fa:fa-circle ada, cblp \n
 oref: seed
 "]

 i_usd_vault_0["
 fa:fa-address-book M\n
 fa:fa-circle usd\n
 fa:fa-database UsdVault
 "]

 i_usd_vault_1["
 fa:fa-address-book M\n
 fa:fa-circle usd\n
 fa:fa-database UsdVault
 "]

 p_m["
 fa:fa-circle M\n
 "]

​ ​ 35

 r_pfp["
 fa:fa-address-book Pfp\n
 fa:fa-circle pfp-validity\n
 fa:fa-database PfCredentials
 "]

 r_gov["
 fa:fa-address-book Gov\n
 fa:fa-circle gov-validity\n
 fa:fa-database GovDat
 "]

 w_pf["
 fa:fa-download PF\n
 "]

 m["tx"]

 o_position["
 fa:fa-address-book M\n
 fa:fa-circle ada, user-validity
 fa:fa-database Position(now)
 "]

 o_fee["
 fa:fa-address-book M\n
 fa:fa-circle cblp
 fa:fa-database CblpVault
 "]

 o_usd_vault["
 fa:fa-address-book M\n
 fa:fa-circle usd
 fa:fa-database UsdVault
 "]

 o_user["
 fa:fa-address-book User\n
 fa:fa-circle usd, user-auth
 "]

 i_user --> m
 i_usd_vault_0 & i_usd_vault_1 -->|Borrow| m -->
o_position & o_fee & o_usd_vault
 m --> o_user
 p_m -.->|Mint| m
 w_pf -.->|PriceFeed| m
 r_pfp & r_gov -.-o m

​ ​ 36

`tx.repay`

The user repays USD unlocking their ada collateral. This example outputs

two USD vaults.

mermaid
flowchart LR
 i_user["
 fa:fa-address-book User\n
 fa:fa-circle usd, user-auth
 "]

 i_position["
 fa:fa-address-book M\n
 fa:fa-circle ada, user-validity
 fa:fa-database Position
 "]

 p_m["
 fa:fa-circle M\n
 "]

 m["tx"]

 o_usd_vault_0["
 fa:fa-address-book M\n
 fa:fa-circle usd\n
 fa:fa-database UsdVault
 "]

 o_usd_vault_1["
 fa:fa-address-book M\n
 fa:fa-circle usd\n
 fa:fa-database UsdVault
 "]

 i_user["
 fa:fa-address-book User\n
 fa:fa-circle Ada \n
 "]

 i_user --> m
 i_position -->|Repay| m --> o_usd_vault_0 & o_usd_vault_1
 p_m -.->|Burn| m

​ ​ 37

`tx.exchange_cblp`

A user exchanges USD for CBLP. In this example, we have 3 script inputs,

and the remaining (un-exchanged) CBLP is returned as an output.

mermaid
flowchart LR
 i_user["
 fa:fa-address-book User\n
 fa:fa-circle usd,
 "]

 i_cblp_vault_0["
 fa:fa-address-book M\n
 fa:fa-circle ada, cblp
 fa:fa-database CblpVault
 "]

 i_cblp_vault_1["
 fa:fa-address-book M\n
 fa:fa-circle ada, cblp
 fa:fa-database CblpVault
 "]

 i_cblp_vault_2["
 fa:fa-address-book M\n
 fa:fa-circle ada, cblp
 fa:fa-database CblpVault
 "]

 r_pfp["
 fa:fa-address-book Pfp\n
 fa:fa-circle pfp-validity\n
 fa:fa-database PfCredentials
 "]

 w_pf["
 fa:fa-download PF\n
 "]

 m["tx"]

 o_usd_vault["
 fa:fa-address-book M\n
 fa:fa-circle usd\n

​ ​ 38

 fa:fa-database UsdVault
 "]

 o_cblp_vault["
 fa:fa-address-book M\n
 fa:fa-circle ada, cblp
 fa:fa-database CblpVault
 "]

 o_user["
 fa:fa-address-book User\n
 fa:fa-circl ada, cblp \n
 "]

 i_user --> m
 i_cblp_vault_0 & i_cblp_vault_1 & i_cblp_vault_2
-->|Exchange| m --> o_usd_vault & o_cblp_vault
 m --> o_user
 w_pf -.->|PriceFeed| m
 r_pfp -.-o m

`tx.exchange_ada`

A user exchanges USD for ADA. This is completely analogous to

`tx.exchange_cblp`, where the datums are all `AdaVault` instead of

`CblpVault`. In this example, we have 3 script inputs, and the remaining

(un-exchanged) CBLP is returned as an output.

`tx.m_withdraw`

mermaid
flowchart LR
 i_user["
 fa:fa-address-book User\n
 "]

 w_m["
 fa:fa-download M\n
 "]

 m["tx"]

​ ​ 39

 o_cblp_vault["
 fa:fa-address-book M\n
 fa:fa-circle ada\n
 fa:fa-database CblpVault
 "]

 i_user --> m
 m --> o_cblp_vault
 w_m -.->|Withdraw| m

​ ​ 40

IX. Comments

Weaknesses

Oracles

Oracles play a critical role in providing external data to the blockchain.

However, their reliance on off-chain data introduces inherent limitations.

Oracles cannot inherently provide the same level of validity guarantees as

on-chain data. This means any protocol depending on an oracle is, to

some extent, vulnerable to the reliability and accuracy of external data

sources.

The Role of Oracles in Yamfore

The Yamfore dApp requires an oracle to provide the stablecoin price

relative to ADA. While there are on-chain proxies that could potentially fulfill

this role, the protocol has chosen to use oracles for two key reasons:

●​ Feasibility: Utilizing automated market maker (AMM) liquidity pools

as a price source is impractical due to the rapid changes in liquidity

and prices. This volatility could cause user transactions to fail by

becoming stale before reaching the blockchain nodes.

●​ Longevity: The protocol cannot rely on third-party mechanisms or

platforms to operate indefinitely. Oracles offer a more adaptable

solution to ensure the dApp’s long-term functionality.

​ ​ 41

Updatable Oracle Mechanism

To address these challenges, Yamfore employs an updatable oracle

mechanism that allows for flexibility and governance:

●​ Governance Transition: Over time and under suitable conditions, the

oracle’s update mechanism can be transitioned to a governance

committee (e.g., multisig governance).

●​ Potential Phase-Out: If a stablecoin eventually offers its own reliable

price feed, the oracle mechanism can be retired entirely.

By adopting this approach, Yamfore balances feasibility and longevity,

ensuring that the protocol remains robust and adaptable while minimizing

reliance on potentially volatile or transient data sources.

​ ​ 42

X. Appendix

Glossary

●​ Validator

○​ A Plutus script which contains the logic for what is necessary to

spend the funds locked at its address or mint/burn assets of a

specific PolicyID. For more info see here

●​ Redeemer

○​ Input data provided to a script. For more info see here

Documentation Issues

●​ Mermaidjs bug: direction of subgraphs untameable

​ ​ 43

https://plutus.readthedocs.io/en/latest/tutorials/basic-validators.html?highlight=validator
https://plutus.readthedocs.io/en/latest/simple-example.html?highlight=redeemer#the-eutxo-model-datum-redeemer-and-script-context
https://github.com/mermaid-js/mermaid/pull/4740

	
	
	Yamfore
	
	
	Contents
	
	
	I. Introduction
	For users
	Borrowing USD
	
	
	
	Repaying Loans
	Acquiring CBLP
	
	
	Deposit Staking and Rewards

	For Admins
	CBLP Management
	Price Feed Management
	Staking Management
	Stablecoin Integration

	II. Constants
	
	III. Tokens
	IV. Externals
	CBLP Integration
	Exchange Rates
	
	Upgradable Data Layer

	
	
	
	
	
	
	V. Validators
	Dependency Types
	Acyclic Dependency Graph
	PF: Price Feed
	Datatypes
	Constraints
	Notes

	PFP: Price Feed Pointer
	Datatypes
	Constraints

	Gov: Governance
	Datatypes

	M: Main
	Datatypes
	Constraints
	
	Notes

	
	VI. Functions
	Rationals*
	Fees, collateral, and repayment
	In validators

	Other

	VII. Examples
	
	Example A

	VIII. Transactions
	`tx.pfp_init`
	`tx.pfp_update`
	`tx.pfp_close`
	`tx.gov_init`
	`tx.gov_update`
	`tx.gov_close`
	`tx.m_init`
	`tx.m_publish`
	`tx.m_close`
	`tx.borrow`
	`tx.repay`
	`tx.exchange_cblp`
	`tx.exchange_ada`
	`tx.m_withdraw`

	
	IX. Comments
	Weaknesses
	Oracles
	The Role of Oracles in Yamfore
	
	Updatable Oracle Mechanism

	X. Appendix
	Glossary
	Documentation Issues

